NASA's Swift Satellite Discovers a New Black Hole in our Galaxy
-
An X-ray outburst caught by NASA's Swift on Sept. 16, 2012, resulted from a flood of gas plunging toward a previously unknown black hole. Gas flowing from a sun-like star collects into a disk around the black hole. Normally, this gas would steadily spiral inward. But in this system, named Swift J1745-26, the gas collects for decades before suddenly surging inward. Credit: NASA's Goddard Space Flight Center › Download video in high resolution from Goddard's Scientific Visualization Studio |
NASA's Swift satellite recently detected a rising tide of high-energy X-rays from a source toward the center of our Milky Way galaxy. The outburst, produced by a rare X-ray nova, announced the presence of a previously unknown stellar-mass black hole.
"Bright X-ray novae are so rare that they're essentially once-a-mission events and this is the first one Swift has seen," said Neil Gehrels, the mission's principal investigator, at NASA's Goddard Space Flight Center in Greenbelt, Md. "This is really something we've been waiting for."
An X-ray nova is a short-lived X-ray source that appears suddenly, reaches its emission peak in a few days and then fades out over a period of months. The outburst arises when a torrent of stored gas suddenly rushes toward one of the most compact objects known, either a neutron star or a black hole.
The rapidly brightening source triggered Swift's Burst Alert Telescope twice on the morning of Sept. 16, and once again the next day.
Named Swift J1745-26 after the coordinates of its sky position, the nova is located a few degrees from the center of our galaxy toward the constellation Sagittarius. While astronomers do not know its precise distance, they think the object resides about 20,000 to 30,000 light-years away in the galaxy's inner region.
Ground-based observatories detected infrared and radio emissions, but thick clouds of obscuring dust have prevented astronomers from catching Swift J1745-26 in visible light.
The nova peaked in hard X-rays -- energies above 10,000 electron volts, or several thousand times that of visible light -- on Sept. 18, when it reached an intensity equivalent to that of the famous Crab Nebula, a supernova remnant that serves as a calibration target for high-energy observatories and is considered one of the brightest sources beyond the solar system at these energies.
Even as it dimmed at higher energies, the nova brightened in the lower-energy, or softer, emissions detected by Swift's X-ray Telescope, a behavior typical of X-ray novae. By Wednesday, Swift J1745-26 was 30 times brighter in soft X-rays than when it was discovered and it continued to brighten.
"The pattern we're seeing is observed in X-ray novae where the central object is a black hole. Once the X-rays fade away, we hope to measure its mass and confirm its black hole status," said Boris Sbarufatti, an astrophysicist at Brera Observatory in Milan, Italy, who currently is working with other Swift team members at Penn State in University Park, Pa.
The black hole must be a member of a low-mass X-ray binary (LMXB) system, which includes a normal, sun-like star. A stream of gas flows from the normal star and enters into a storage disk around the black hole. In most LMXBs, the gas in the disk spirals inward, heats up as it heads toward the black hole, and produces a steady stream of X-rays.
But under certain conditions, stable flow within the disk depends on the rate of matter flowing into it from the companion star. At certain rates, the disk fails to maintain a steady internal flow and instead flips between two dramatically different conditions -- a cooler, less ionized state where gas simply collects in the outer portion of the disk like water behind a dam, and a hotter, more ionized state that sends a tidal wave of gas surging toward the center.
"Each outburst clears out the inner disk, and with little or no matter falling toward the black hole, the system ceases to be a bright source of X-rays," said John Cannizzo, a Goddard astrophysicist. "Decades later, after enough gas has accumulated in the outer disk, it switches again to its hot state and sends a deluge of gas toward the black hole, resulting in a new X-ray outburst."
This phenomenon, called the thermal-viscous limit cycle, helps astronomers explain transient outbursts across a wide range of systems, from protoplanetary disks around young stars, to dwarf novae -- where the central object is a white dwarf star -- and even bright emission from supermassive black holes in the hearts of distant galaxies.
Swift, launched in November 2004, is managed by Goddard Space Flight Center. It is operated in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico and Orbital Sciences Corp. in Dulles, Va., with international collaborators in the United Kingdom and Italy and including contributions from Germany and Japan.
NASA Observatory Measures Expansion of Universe
The cosmic distance ladder, symbolically shown here in this artist's concept, is a series of stars and other objects within galaxies that have known distances. Image credit: NASA/JPL-Caltech › Full image and caption
This graph illustrates the Cepheid period-luminosity relationship, which scientists use to calculate the size, age and expansion rate of the universe. Image credit: NASA/JPL-Caltech/Carnegie› Full image and caption
PASADENA, Calif. -- Astronomers using NASA's Spitzer Space Telescope have announced the most precise measurement yet of the Hubble constant, or the rate at which our universe is stretching apart.
The Hubble constant is named after the astronomer Edwin P. Hubble, who astonished the world in the 1920s by confirming our universe has been expanding since it exploded into being 13.7 billion years ago. In the late 1990s, astronomers discovered the expansion is accelerating, or speeding up over time. Determining the expansion rate is critical for understanding the age and size of the universe.
Unlike NASA's Hubble Space Telescope, which views the cosmos in visible light, Spitzer took advantage of long-wavelength infrared light to make its new measurement. It improves by a factor of 3 on a similar, seminal study from the Hubble telescope and brings the uncertainty down to 3 percent, a giant leap in accuracy for cosmological measurements. The newly refined value for the Hubble constant is 74.3 plus or minus 2.1 kilometers per second per megaparsec. A megaparsec is roughly 3 million light-years.
"Spitzer is yet again doing science beyond what it was designed to do," said project scientist Michael Werner at NASA's Jet Propulsion Laboratory in Pasadena, Calif. Werner has worked on the mission since its early concept phase more than 30 years ago. "First, Spitzer surprised us with its pioneering ability to study exoplanet atmospheres," said Werner, "and now, in the mission's later years, it has become a valuable cosmology tool."
In addition, the findings were combined with published data from NASA's Wilkinson Microwave Anisotropy Probe to obtain an independent measurement of dark energy, one of the greatest mysteries of our cosmos. Dark energy is thought to be winning a battle against gravity, pulling the fabric of the universe apart. Research based on this acceleration garnered researchers the 2011 Nobel Prize in physics.
"This is a huge puzzle," said the lead author of the new study, Wendy Freedman of the Observatories of the Carnegie Institution for Science in Pasadena. "It's exciting that we were able to use Spitzer to tackle fundamental problems in cosmology: the precise rate at which the universe is expanding at the current time, as well as measuring the amount of dark energy in the universe from another angle." Freedman led the groundbreaking Hubble Space Telescope study that earlier had measured the Hubble constant.
Glenn Wahlgren, Spitzer program scientist at NASA Headquarters in Washington, said infrared vision, which sees through dust to provide better views of variable stars called cepheids, enabled Spitzer to improve on past measurements of the Hubble constant.
"These pulsating stars are vital rungs in what astronomers call the cosmic distance ladder: a set of objects with known distances that, when combined with the speeds at which the objects are moving away from us, reveal the expansion rate of the universe," said Wahlgren.
Cepheids are crucial to the calculations because their distances from Earth can be measured readily. In 1908, Henrietta Leavitt discovered these stars pulse at a rate directly related to their intrinsic brightness.
To visualize why this is important, imagine someone walking away from you while carrying a candle. The farther the candle traveled, the more it would dim. Its apparent brightness would reveal the distance. The same principle applies to cepheids, standard candles in our cosmos. By measuring how bright they appear on the sky, and comparing this to their known brightness as if they were close up, astronomers can calculate their distance from Earth.
Spitzer observed 10 cepheids in our own Milky Way galaxy and 80 in a nearby neighboring galaxy called the Large Magellanic Cloud. Without the cosmic dust blocking their view, the Spitzer research team was able to obtain more precise measurements of the stars' apparent brightness, and thus their distances. These data opened the way for a new and improved estimate of our universe's expansion rate.
"Just over a decade ago, using the words 'precision' and 'cosmology' in the same sentence was not possible, and the size and age of the universe was not known to better than a factor of two," said Freedman. "Now we are talking about accuracies of a few percent. It is quite extraordinary."
The study appears in the Astrophysical Journal. Freedman's co-authors are Barry Madore, Victoria Scowcroft, Chris Burns, Andy Monson, S. Eric Person and Mark Seibert of the Observatories of the Carnegie Institution and Jane Rigby of NASA's Goddard Space Flight Center in Greenbelt, Md.
NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visithttp://spitzer.caltech.edu and http://www.nasa.gov/spitzer .
SpaceX Launch to Resupply Station Set for Sunday
SpaceX is set to launch the first of a dozen operational missions for NASA to deliver more than 1,000 pounds of supplies to the International Space Station on Oct. 7. Launch time is 8:35 p.m. from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, just a few miles south of the space shuttle launch pads. The spacecraft will be joined to the station three days later.
The flight, known as CRS-1, will launch and perform the same rendezvous with the station as a previous SpaceX craft.
The SpaceX Dragon capsule will ride into space on the strength of the company's Falcon 9 rocket and the booster's nine first stage kerosene- and oxygen-powered Merlin engines. The Falcon 9's second stage uses a single Merlin engine to boost the Dragon into its final orbit.
Eleven minutes after launch, when the Dragon capsule is safely in orbit, a pair of solar arrays will deploy from the sides of the Dragon and controllers on Earth will begin testing rendezvous sensors.
The mission is similar to the demonstration flight in May when a Dragon was grappled by the station's robotic arm to complete the first rendezvous and berthing by a private spacecraft at the space station.
The SpaceX craft will spend about three weeks connected to the station then it will be released to return to Earth.
A major difference for this mission is that the Dragon will be filled with an amount of cargo suitable for an operational mission. The prior flight carried just enough items to prove the capsule would do its job as a cargo hauler. This time, the manifest will include a freezer for the station's scientific samples, a powered middeck locker with an experiment inside along with a variety of materials for the astronauts living and working on the space station.
The supply flight is part of NASA's Commercial Resupply Services contract, which is paying SpaceX for 12 cargo runs to the orbiting laboratory. The station also is serviced by Russian Progress cargo capsules, European-made and launched Automated Transfer Vehicles, or ATVs, and Japanese-produced H-II Transfer Vehicles, or HTVs. All the cargo ships operate without astronauts or crew members aboard.
Once the spacecraft arrive at the station, the astronauts and cosmonauts onboard unload them and fill them with used materials or unneeded equipment before releasing them.
Here, SpaceX again does something unique. The Dragons are built with heat shields to survive a plunge through the atmosphere and splashdown safely in the ocean under billowing parachutes. The other cargo craft do not carry heat shields, so they just burn up in the atmosphere.
On its return trip, the Dragon capsule will carry more than a ton of scientific samples collected during space station research, along with the freezer the samples have been stored in. Astronauts also will load used station hardware into the capsule for return to Earth where engineers can get a firsthand look at it.
A second kind of American cargo craft is also being developed. The Orbital Sciences' Cygnus spacecraft and Antares rocket are due to make a demonstration flight later this year.
No comments:
Post a Comment